这要是攻击陆上固定目标,8米的精度足够秒杀一切存在了,问题是反舰弹道导弹打击的是海上移动目标,8米的误差看着不多,但在茫茫大海上却极易出现偏差,绝对差之毫厘谬以千里。
当然,解决这个问题的最好办法是加装一套卫星定位模组,以高精度卫星定位系统确保再入弹头的打击精度,通常可以做到1米以内。
问题是此时的国内别说卫星定位系统了,就是自己的卫星通信系统都不太够用,购买国外的相关组件就更行不通了,反舰弹道导弹可是国之利器,常规装备中的杀手锏,这么重要的装备无论如何也不可能使用无法自主可控的设备。
平时倒也罢了,关键时刻域外国家万一关掉卫星定位系统怎么办?这仗还打不打了?
所以只能用别的方法。
为此主导此项工作的中国腾飞尝试了几种高精度指导系统,比如说激光成像、再比如说星光制导等等,可无论那种制导系统都有这样那样的缺陷。
就比如说激光成像,精度能做到0.5米,几乎达到了指哪儿打哪儿的程度,但激光在恶劣气象条件下的效果实在是有些感人,精度更是一落千丈,稳定性并不好。
而星光制导到是没有恶劣气象的桎梏,但整体结构过于复杂,不但要整合惯导和激光陀螺仪,弹头上还要设置复杂的光学窗口。
为了实现高超声速攻击,反舰弹道导弹的再入弹头都是经过启动优化的,必然会牺牲一定的空间,这导致复杂的星光制导很难整合到弹头内。
就在反舰弹道导弹精确打击模式陷入瓶颈时,反导\\反卫星系统所使用的动能碰撞杀伤战斗部却取得了重大进展。